Copied to
clipboard

G = C6×C322Q8order 432 = 24·33

Direct product of C6 and C322Q8

direct product, metabelian, supersoluble, monomial

Aliases: C6×C322Q8, C62.112D6, C61(C3×Dic6), (C3×C6)⋊7Dic6, C32(C6×Dic6), (C32×C6)⋊3Q8, C326(C6×Q8), C3313(C2×Q8), C62.28(C2×C6), Dic3.7(S3×C6), (C6×Dic3).8C6, (C3×Dic3).48D6, (C6×Dic3).19S3, C3214(C2×Dic6), (C32×C6).35C23, (C3×C62).22C22, (C32×Dic3).25C22, C2.16(S32×C6), (C2×C6).75S32, C6.16(S3×C2×C6), (C3×C6)⋊3(C3×Q8), C6.119(C2×S32), (C2×C6).30(S3×C6), C22.12(C3×S32), (Dic3×C3×C6).9C2, (C2×C3⋊Dic3).12C6, C3⋊Dic3.20(C2×C6), (C6×C3⋊Dic3).18C2, (C3×C6).26(C22×C6), (C3×Dic3).7(C2×C6), (C2×Dic3).3(C3×S3), (C3×C6).140(C22×S3), (C3×C3⋊Dic3).57C22, SmallGroup(432,657)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C6×C322Q8
C1C3C32C3×C6C32×C6C32×Dic3C3×C322Q8 — C6×C322Q8
C32C3×C6 — C6×C322Q8
C1C2×C6

Generators and relations for C6×C322Q8
 G = < a,b,c,d,e | a6=b3=c3=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 576 in 210 conjugacy classes, 80 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, Q8, C32, C32, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C2×Q8, C3×C6, C3×C6, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C3×Q8, C33, C3×Dic3, C3×Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, C2×Dic6, C6×Q8, C32×C6, C32×C6, C322Q8, C3×Dic6, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C6×C12, C32×Dic3, C3×C3⋊Dic3, C3×C62, C2×C322Q8, C6×Dic6, C3×C322Q8, Dic3×C3×C6, C6×C3⋊Dic3, C6×C322Q8
Quotients: C1, C2, C3, C22, S3, C6, Q8, C23, D6, C2×C6, C2×Q8, C3×S3, Dic6, C3×Q8, C22×S3, C22×C6, S32, S3×C6, C2×Dic6, C6×Q8, C322Q8, C3×Dic6, C2×S32, S3×C2×C6, C3×S32, C2×C322Q8, C6×Dic6, C3×C322Q8, S32×C6, C6×C322Q8

Smallest permutation representation of C6×C322Q8
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 47 45)(44 48 46)
(1 5 3)(2 6 4)(7 9 11)(8 10 12)(13 17 15)(14 18 16)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)
(1 28 16 24)(2 29 17 19)(3 30 18 20)(4 25 13 21)(5 26 14 22)(6 27 15 23)(7 35 47 39)(8 36 48 40)(9 31 43 41)(10 32 44 42)(11 33 45 37)(12 34 46 38)
(1 37 16 33)(2 38 17 34)(3 39 18 35)(4 40 13 36)(5 41 14 31)(6 42 15 32)(7 30 47 20)(8 25 48 21)(9 26 43 22)(10 27 44 23)(11 28 45 24)(12 29 46 19)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,28,16,24)(2,29,17,19)(3,30,18,20)(4,25,13,21)(5,26,14,22)(6,27,15,23)(7,35,47,39)(8,36,48,40)(9,31,43,41)(10,32,44,42)(11,33,45,37)(12,34,46,38), (1,37,16,33)(2,38,17,34)(3,39,18,35)(4,40,13,36)(5,41,14,31)(6,42,15,32)(7,30,47,20)(8,25,48,21)(9,26,43,22)(10,27,44,23)(11,28,45,24)(12,29,46,19)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,47,45)(44,48,46), (1,5,3)(2,6,4)(7,9,11)(8,10,12)(13,17,15)(14,18,16)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48), (1,28,16,24)(2,29,17,19)(3,30,18,20)(4,25,13,21)(5,26,14,22)(6,27,15,23)(7,35,47,39)(8,36,48,40)(9,31,43,41)(10,32,44,42)(11,33,45,37)(12,34,46,38), (1,37,16,33)(2,38,17,34)(3,39,18,35)(4,40,13,36)(5,41,14,31)(6,42,15,32)(7,30,47,20)(8,25,48,21)(9,26,43,22)(10,27,44,23)(11,28,45,24)(12,29,46,19) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,47,45),(44,48,46)], [(1,5,3),(2,6,4),(7,9,11),(8,10,12),(13,17,15),(14,18,16),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48)], [(1,28,16,24),(2,29,17,19),(3,30,18,20),(4,25,13,21),(5,26,14,22),(6,27,15,23),(7,35,47,39),(8,36,48,40),(9,31,43,41),(10,32,44,42),(11,33,45,37),(12,34,46,38)], [(1,37,16,33),(2,38,17,34),(3,39,18,35),(4,40,13,36),(5,41,14,31),(6,42,15,32),(7,30,47,20),(8,25,48,21),(9,26,43,22),(10,27,44,23),(11,28,45,24),(12,29,46,19)]])

90 conjugacy classes

class 1 2A2B2C3A3B3C···3H3I3J3K4A4B4C4D4E4F6A···6F6G···6X6Y···6AG12A···12AF12AG12AH12AI12AJ
order1222333···33334444446···66···66···612···1212121212
size1111112···2444666618181···12···24···46···618181818

90 irreducible representations

dim111111112222222222444444
type+++++-++-+-+
imageC1C2C2C2C3C6C6C6S3Q8D6D6C3×S3Dic6C3×Q8S3×C6S3×C6C3×Dic6S32C322Q8C2×S32C3×S32C3×C322Q8S32×C6
kernelC6×C322Q8C3×C322Q8Dic3×C3×C6C6×C3⋊Dic3C2×C322Q8C322Q8C6×Dic3C2×C3⋊Dic3C6×Dic3C32×C6C3×Dic3C62C2×Dic3C3×C6C3×C6Dic3C2×C6C6C2×C6C6C6C22C2C2
# reps1421284222424848416121242

Matrix representation of C6×C322Q8 in GL6(𝔽13)

1200000
0120000
003000
000300
000010
000001
,
100000
010000
001000
000100
0000012
0000112
,
12120000
100000
001000
000100
000010
000001
,
100000
010000
000100
0012000
000001
000010
,
100000
12120000
0010900
009300
000010
000001

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,10,9,0,0,0,0,9,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C6×C322Q8 in GAP, Magma, Sage, TeX

C_6\times C_3^2\rtimes_2Q_8
% in TeX

G:=Group("C6xC3^2:2Q8");
// GroupNames label

G:=SmallGroup(432,657);
// by ID

G=gap.SmallGroup(432,657);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,168,365,176,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^3=c^3=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽